



















8



9

### THERMAL/PHYSICAL PROPERTIES

- 1. BOILING POINT-Should be lower than operating conditions
- 2. DISCHARGE TEMPERATURE-Should be lower than 130°C
- 3. DISCHARGE PRESSURE-Should be reasonably low
- 4. SPECIFIC VOLUME-Should be low
- 5. DENSITY-Should be high
- 6. Latent heat of vaporization-Should be high
- 7. Compressor displacement-Should be low

- REFRIGERANT EVALUATION PROCESS
- 1. ENVIRONMENTAL IMPACT
- 2. PERFORMANCE-COP-(Output in kW /input in kW)
- 3. ENERGY EFFICIENCY-Energy consumed -kW/TR
- 4. TOXICITY/SAFETY
- 5. FLAMMABILITY
- 6. MATERIAL COMPATIBILITY
- 7. STABILITY
- 8. COST



| ABOVE ALL OTH                                     | L REFRIGERANT SCORES<br>HER REFRIGERANTS                  |
|---------------------------------------------------|-----------------------------------------------------------|
| Ammonia is produced in a n<br>animals; 17 grams/d | atural way by human beings and<br>lay produced by humans. |
|                                                   |                                                           |
| Natural production                                | 3000 million tons/year                                    |
| Natural production Production in factories        | 3000 million tons/year<br>120 million tons/year           |

| Ammonia Refrigerat                                                                             | tion-Grade properties               |
|------------------------------------------------------------------------------------------------|-------------------------------------|
| Boiling point at one<br>atmosphere(101.33kPa)                                                  | -33.33 Deg. C                       |
| Freezing point/Triple point at one atmosphere                                                  | -77.66 Deg. C                       |
| Critical Temperature                                                                           | 132.22 Deg. C                       |
| Relative Density of Vapour compared to air                                                     | 0.5976-Lighter than air             |
| Lower Flammability limit-LFL                                                                   | 15-16%-108000mg/m3                  |
| Upper Flammability limit                                                                       | 25-28%-240,000mg/m3                 |
| Ignition temperature                                                                           | 651.1 Deg. C                        |
| Ratio of sp. heat at 15 <sup>0</sup> C and 1<br>atmosphere (Y=C <sub>p</sub> /C <sub>v</sub> ) | 1.32                                |
| Solubility in water                                                                            | 0.571kg or 650 g in 1 ltr. of water |



| mmonia content                         | Min.99.95%-purity      |
|----------------------------------------|------------------------|
| ppearance                              | Colourless             |
| dour                                   | Characteristic-Pungent |
| P                                      | 0                      |
| WP                                     | 0                      |
| mospheric life                         | Nearly zero <0.019165  |
| ter content                            | 33PPM max.             |
| l content                              | 2PPM max.              |
| n condensable                          | 0.2ml/g                |
| lt content                             | Nil                    |
| ridine, Hydrogen sulphide, Naphthalene | Nil                    |
| lecular weight                         | 17.031                 |
| oncentration in Human blood            | 0.8-1.7 PPM            |







| Refrigerant     | ODP   | GWP  | Atmospheric Life-years |
|-----------------|-------|------|------------------------|
| R-22 (HCFC -22) | 0.055 | 1790 | 11.9                   |
| R-134a          | 0     | 1370 | 13.4                   |
| R404A           | 0     | 3700 | 16                     |
| R407C           | 0     | 1700 | 5.6                    |
| R410A           | 0     | 2100 | 16                     |
| R507C           | 1     | 3300 | 40.5                   |
| R32             | 0     | 675  | 4.9                    |
| R290-Propane    | 0     | 3.3  | 12.0                   |
| R1234Ze         | 0     | 6.0  | 0                      |
| R1234yf         | 0     | 4.0  | 0                      |
| R744=CO2        | 0     | 1.0  | 29-36                  |
| Ammonia, R717   | 0     | 0    | <0.02                  |

21

# TEWI Effect--Total Equivalent Warming Impact

It is defined as sum of the direct emissions from leaks and indirect emissions (energy use) resulting from power consumption.

TEWI can be calculated using the equation below (UNIDO 2009): TEWI = direct emissions + indirect emissions =

- $(GWP \times L \times N) + (Ea \times \beta \times n)$ , where
- L- annual leakage rate in the system, kg (3% of refrigerant charge annually),
- N life of the system, years (15 years),

n - system running time, years (based on weather data, 4910 hours), Ea - energy consumption, kWh per year (modelled for each

- refrigerant),
- $\beta$  carbon dioxide emission factor, CO2-eq. emissions per kWh (165 g CO2/kWh)



20

# What is TEWI?

TEWI is a measure of the global warming impact of equipment based on the total related emissions of greenhouse gases during the operation of the equipment and the disposal of the operating fluids at the end-of-life.

TEWI takes into account both direct emissions, and indirect emissions produced through the energy consumed in operating the equipment. TEWI is measured in units of mass in kg of carbon dioxide equivalent (CO2-e).

TEWI is calculated as the sum of two parts, they are:

1. Refrigerant released during the lifetime of the equipment,

including unrecovered losses on final disposal,

2. The impact of CO2 emissions from fossil fuels used to generate energy to operate the equipment throughout its lifetime., means related to power consumption





| EWI- COM<br>for an <u>c</u><br>tempera | <b>PARISON</b><br>evaporation ture $t_c=35$ °C | OF DIFFER<br>temperature <i>t</i><br>C, and an ope | ENT REFR<br>$t_0 = -20^\circ$ , a contracting time of | RIGERANT<br>ondensing<br>of 15 years. |
|----------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|---------------------------------------|
|                                        | Direc                                          | t Effect                                           | Indire                                                | et Effect                             |
| Table 3                                | s●<br>Operating<br>Leak (kg<br>CO2)            | Fluid<br>Recovery<br>Leak (kg<br>CO2)              | Drive Energy<br>Generation<br>(kg CO2)                | TEWI<br>(kgCO2)                       |
| R22                                    | 1,033,500                                      | 68,900                                             | 1,805,400                                             | 2,907,800                             |
| R134a                                  | 911,625                                        | 60,775                                             | 1,884,150                                             | 2,856,550                             |
| R407C                                  | 999,352                                        | 66,623                                             | 2,104,650                                             | 3,170,625                             |
| R410A                                  | 1,049,555                                      | 69,970                                             | 1,962,900                                             | 3,082,425                             |
| R717                                   | 0                                              | 0                                                  | 1,457,550                                             | 1,457,550                             |
|                                        |                                                |                                                    | . ,                                                   |                                       |

#### What is LCCP?

LCCP = Life Cycle Climate Performance

TEWI +1+2

1. GWP (indirect; energy consumption from chemical Refrigerant production and transport, manufacturing components,

assembly and end-of-life) 2 GWP (direct; chemical refrigerant emissions including

atmospheric reaction products, manufacturing leakage and end-oflife)

27

#### IT IS THE LATENT HEAT WHICH MAKES **REFRIGERATION SYSTEMS WORK-(PHASE CHANGE)**

-SENSIBLE HEAT DOES HARDLY ANY COOLING

When refrigerant boils in the Evaporator it absorbs lot of heat from the medium to be cooled and gets converted in vapour , i.e. latent heat.

For Example- at -10°C, the enthalpy of Ammonia liquid is 1450.70kJ/kg whereas specific heat of liquid is only 4.564 kJ/kg.K, Latent heat is nearly 320 times more

Same thing happens in condenser when vapours get condensed in liquid it rejects lot of heat.



26



# LATENT HEAT COMPARISON @ 4-5°C

| • | Water R- | 718- | 2489 | .04kJ/kg |
|---|----------|------|------|----------|
|---|----------|------|------|----------|

- Ammonia R717-1247.85kJ/kg
- R410A-
- 214.48kJ/kg • HCFC 22/R22-201.79kJ/kg
- HFC 134a/R134a-
- 195.52kJ/kg • R404A-162.03kJ/kg

Ammonia latent heat is 6 to 9 times more





| n .  |                                                               |                                      |                                     |                           |                                                |                                                | ,15                                   | 1 4010                                                          | 0-2                                              |                                  |                                         |                                              |
|------|---------------------------------------------------------------|--------------------------------------|-------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|----------------------------------------------|
| Refi | rigerants                                                     |                                      |                                     |                           |                                                |                                                |                                       |                                                                 |                                                  |                                  |                                         | 29.9                                         |
|      | Tal                                                           | ble 9 Con                            | nparative                           | Refrige                   | rant Per                                       | forman                                         | ce per T                              | on of Refr                                                      | igeration                                        |                                  |                                         |                                              |
| No.  | Refrigerant<br>Chemical Name<br>or Composition<br>(% by mass) | Evap-<br>orator<br>Pressure,<br>psia | Con-<br>denser<br>Pressure,<br>psia | Com-<br>pression<br>Ratio | Net<br>Refrig-<br>erating<br>Effect,<br>Btu/lb | Refrig-<br>erant<br>Circu-<br>lated,<br>Ib/min | Liquid<br>Circu-<br>lated,<br>gal/min | Specific<br>Volume<br>of Suction<br>Gas,<br>ft <sup>3</sup> /lb | Com-<br>pressor<br>Displace-<br>ment,<br>gal/min | Power<br>Consump-<br>tion,<br>hp | Coeffi-<br>cient of<br>Perform-<br>ance | Com-<br>pressor<br>Discharge<br>Temp.,<br>°F |
| 170  | Ethane                                                        | 233.2                                | 672.8                               | 2.88                      | 69.5                                           | 0.81                                           | 0.35                                  | 0.541                                                           | 3.27                                             | 0.489                            | 2.7                                     | 121.73                                       |
| 744  | Carbon dioxide                                                | 326.9                                | 1041.4                              | 3.19                      | 57.3                                           | 0.51                                           | 0.10                                  | 0.269                                                           | 1.03                                             | 0.257                            | 2.69                                    | 157.73                                       |
| 1270 | Propylene                                                     | 51.9                                 | 189.1                               | 3.64                      | 123.0                                          | 0.46                                           | 0.11                                  | 2.081                                                           | 7.12                                             | 0.295                            | 4.5                                     | 107.33                                       |
| 290  | Propane                                                       | 41.5                                 | 155.9                               | 3.76                      | 119.5                                          | 0.47                                           | 0.12                                  | 2.502                                                           | 8.73                                             | 0.292                            | 4.5                                     | 96.53                                        |
| 502  | R-22/115 (48.8/51.2)                                          | 49.7                                 | 190.3                               | 3.83                      | 45.6                                           | 1.25                                           | 0.13                                  | 0.814                                                           | 7.59                                             | 0.306                            | 4.38                                    | 100.13                                       |
| 507A | R-125/143a (50/50)                                            | 55.0                                 | 211.6                               | 3.85                      | 47.4                                           | 1.20                                           | 0.14                                  | 0.814                                                           | 7.31                                             | 0.321                            | 4.18                                    | 94.73                                        |
| 404A | R-125/143a/134a (44/52/4)                                     | 52.9                                 | 206.0                               | 3.89                      | 49.1                                           | 1.16                                           | 0.14                                  | 0.860                                                           | 7.45                                             | 0.318                            | 4.21                                    | 96.53                                        |
| 410A | R-32/125 (50/50)                                              | 69.3                                 | 271.5                               | 3.92                      | 72.2                                           | 0.77                                           | 0.09                                  | 0.873                                                           | 5.04                                             | 0.298                            | 4.41                                    | 123.53                                       |
| 125  | Pentafluoroethane                                             | 58.5                                 | 226.4                               | 3.87                      | 36.7                                           | 1.51                                           | 0.16                                  | 0.631                                                           | 7.12                                             | 0.327                            | 3.99                                    | 87.53                                        |
| 22   | Chlorodifluoromethane                                         | 42.8                                 | 172.2                               | 4.02                      | 69.9                                           | 0.81                                           | 0.08                                  | 1.248                                                           | 7.58                                             | 0.287                            | 4.66                                    | 127.13                                       |
| 12   | Dichlorodifluoromethane                                       | 26.3                                 | 107.5                               | 4.09                      | 50.3                                           | 1.12                                           | 0.10                                  | 1.479                                                           | 12.43                                            | 0.284                            | 4.7                                     | 100.13                                       |
| 500  | R-12/1528 (73.8/26.2)                                         | 31.0                                 | 127.1                               | 4.09                      | 60.1                                           | 0.94                                           | 0.10                                  | 1.504                                                           | 10.54                                            | 0.284                            | 4.00                                    | 105.53                                       |
| 40/0 | R-32/125/134a (23/25/52)                                      | 41.8                                 | 182.7                               | 4.38                      | 70.2                                           | 0.81                                           | 0.09                                  | 1.289                                                           | 7.80                                             | 0.298                            | 4.5                                     | 118.13                                       |
| 124- | Isobutane*                                                    | 12.8                                 | 38.5                                | 4.58                      | 113.5                                          | 0.50                                           | 0.11                                  | 0.524                                                           | 24.30                                            | 0.288                            | 4.02                                    | 85.73                                        |
| 1348 | Tedratiuoroetnane                                             | 23.0                                 | 111.2                               | 4.71                      | 63.6                                           | 0.89                                           | 0.09                                  | 1.945                                                           | 12.90                                            | 0.290                            | 4.0                                     | 98.33                                        |
| 124  | Chiorotetrafiuoroetnane*                                      | 12.8                                 | 64.3                                | 5.05                      | 50.7                                           | 1.11                                           | 0.10                                  | 2.741                                                           | 22.81                                            | 0.287                            | 4.02                                    | 85.73                                        |
| (00  | Determine                                                     | 34.1                                 | 41.0                                | 4.94                      | 4/4.3                                          | 0.12                                           | 0.02                                  | 0.197                                                           | 26.04                                            | 0.282                            | 4.70                                    | 209.93                                       |
|      | Tricklass Occurrently and                                     | 3.0                                  |                                     | 6.05                      | 67.0                                           | 0.47                                           | 0.07                                  | 10.323                                                          | 77.60                                            | 0.292                            | 4.74                                    | 100.13                                       |
| 122  | Disklasstai0ssasthana                                         | 2.9                                  | 16.0                                | 6.01                      | 61.2                                           | 0.02                                           | 0.02                                  | 14 270                                                          | 00.21                                            | 0.274                            | 4.0                                     | 01.12                                        |
| 123  | Trish lanotsi (han stathan st                                 | 1.0                                  | 13.8                                | 0.81                      | 01.2                                           | 0.93                                           | 0.08                                  | 14.279                                                          | 99.21                                            | 0.274                            | 4.7                                     | 91.13                                        |

| COMPARISON@-+40°C/-5°C<br>(for cold storage application) |             |                      |        |  |  |
|----------------------------------------------------------|-------------|----------------------|--------|--|--|
| Refrigerant                                              | Capacity-kW | Power consumption-kW | С.О.Р. |  |  |
| Ammonia-R717                                             | 1068.731    | 215.255              | 4.965  |  |  |
| R410A                                                    | 159.327     | 32.416               | 4.80   |  |  |
| R134a                                                    | 138.124     | 29.551               | 4.67   |  |  |
| R404A                                                    | 102.346     | 25.142               | 4.07   |  |  |
| R22                                                      | 153.832     | 32.416               | 4.74   |  |  |
| Propane-R290                                             | 263.01      | 56.917               | 4.62   |  |  |
| R507                                                     | 109.137     | 25.096               | 4.35   |  |  |
| Isobutate-R600a                                          | 253.671     | 52.966               | 4.79   |  |  |
| Water -R718                                              | 2324.327    | 525.501              | 4.42   |  |  |
| CO <sub>2</sub> -(+31/-5)                                | 107.718     | 35.701               | 3.02   |  |  |

# COMPARISON@-+40°C/+2°C (for chilled water application)

| Refrigerant                                             | Capacity-kW | Power consumption-kW | C.O.P. |
|---------------------------------------------------------|-------------|----------------------|--------|
| Ammonia-R717                                            | 1076.335    | 173.473              | 6.20 - |
| R410A                                                   | 155.467     | 28.647               | 5.43   |
| R134a                                                   | 142.197     | 24.201               | 5.88   |
| R404A                                                   | 106.254     | 20.530               | 5.18   |
| R22                                                     | 156.419     | 26.376               | 5.93   |
| Propane-R290                                            | 290.557     | 46.659               | 5.80   |
| R507                                                    | 111.904     | 20.452               | 5.47   |
| Isobutate-R600a                                         | 263.125     | 43.728               | 6.02   |
| Water -R718                                             | 2337.240    | 403.211              | 5.80   |
| CO <sub>2</sub> -(+31 <sup>0</sup> C/-5 <sup>0</sup> C) | 104.106     | 26.692               | 3.90   |

| COMPARISON@-+40°C/-25°C<br>(for frozen storage application) |             |                      |        |  |  |
|-------------------------------------------------------------|-------------|----------------------|--------|--|--|
| Refrigerant                                                 | Capacity-kW | Power consumption-kW | C.O.P. |  |  |
| Ammonia-R717                                                | 1043.211    | 358.501              | 2.91   |  |  |
| R410A                                                       | 142.662     | 57.08                | 2.50   |  |  |
| R134a                                                       | 126.048     | 46.768               | 2.70   |  |  |
| R404A                                                       | 90.272      | 39.978               | 2.26   |  |  |
| R22                                                         | 145.666     | 52.230               | 2.79   |  |  |
| Propane-R290                                                | 240.649     | 89.845               | 2.68   |  |  |
| R507                                                        | 100.675     | 40.348               | 2.50   |  |  |
| Isobutate-R600a                                             | 226.378     | 82.130               | 2.76   |  |  |
| Water -R718                                                 | 2287.299    | 1024.183             | 2.23   |  |  |
| CO <sub>2</sub> -(+31/-5)                                   | 111.222     | 66.772               | 1.67   |  |  |
|                                                             |             |                      |        |  |  |

| ( for blast/plate/ spiral freezing) |             |                      |        |  |  |  |
|-------------------------------------|-------------|----------------------|--------|--|--|--|
| Refrigerant                         | Capacity-kW | Power consumption-kW | C.O.P. |  |  |  |
| Ammonia-R717                        | 1020.824    | 496.672              | 2.06   |  |  |  |
| R410A                               | 80.654      | 53.063               | 1.52   |  |  |  |
| R134a                               | 116.693     | 61.965               | 1.88   |  |  |  |
| R404A                               | 80.854      | 53.063               | 1.52   |  |  |  |
| R22                                 | 138.945     | 70.159               | 1.98   |  |  |  |
| Propane-R290                        | 223.32      | 118.890              | 1.88   |  |  |  |
| R507                                | 93.932      | 54.234               | 1.73   |  |  |  |
| Isobutate-R600a                     | 207.398     | 107.450              | 1.93   |  |  |  |
| Water –R718                         | 2259.468    | 1603.402             | 1.41   |  |  |  |
| CO2-(+31/-40)                       | 109.446     | 96.160               | 1.14   |  |  |  |

| Energy                  | efficiency -     | Reciproca       | ating | compr |
|-------------------------|------------------|-----------------|-------|-------|
| Performance             | : t-evap,. = -10 | °C; t-cond. = 3 | 35 °C |       |
| Refrigerant             | Refrigerating    | Shaft power     | СОР   | 1/COP |
|                         | capacity         |                 |       |       |
| [-]                     | [kW]             | [kW]            | [-]   | [%]   |
| R717 (NH <sub>3</sub> ) | 425.8            | 112.9           | 3.771 | 100.0 |
| R22                     | 380.3            | 121.3           | 3.135 | 120.3 |
| R134a                   | 218.8            | 74.7            | 2.929 | 128.7 |
| R404A                   | 352.4            | 132.6           | 2.658 | 141.9 |
| R507                    | 356.7            | 136.0           | 2.62  | 143.8 |



| 1                | refrigerants                                             | for various                                        | application                                                                    | S                                    |
|------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| Refrigerant      | For positive<br>Temperature<br>cold rooms-<br>+40°C/+2°C | For secondary<br>fluids<br>operation<br>+40°C/-5°C | For low<br>temperature<br>cold rooms-<br>+40 <sup>0</sup> C/-25 <sup>0</sup> C | Blast<br>freezers/IQF<br>+40ºC/-40ºC |
| Ammonia<br>-R717 | 6.20                                                     | 4.965                                              | 2.91                                                                           | 2.06                                 |
| R410A            | 5.43                                                     | 4.80                                               | 2.50                                                                           | 1.75                                 |
| R134a            | 5.88                                                     | 4.67                                               | 2.70                                                                           | 1.88                                 |
| R404A            | 5.18                                                     | 4.07                                               | 2.26                                                                           | 1.52                                 |
| R22              | 5.93                                                     | 4.74                                               | 2.79                                                                           | 1.98                                 |

| ressor | v comp       | cy – Screv     | rgy efficien  | Ene           |
|--------|--------------|----------------|---------------|---------------|
| С      | nd. = 35 ° ( | -30 ° C; t-cor | Temperature.  | t-evaporating |
| 1/COP  | COP          | Shaft          | Refrigerating | Refrigerant   |
|        |              | power          | capacity      |               |
| [%]    | [-]          | [kW]           | [kW]          | [-]           |
| 100.0  | 1.912        | 228.0          | 435.9         | R717 (NH₃)    |
| 98.6   | 1.940        | 228.4          | 443.2         | R22           |
| 120.3  | 1.589        | 139.4          | 221.5         | R134a         |
| 124.7  | 1.533        | 257.5          | 394.7         | R404A         |
| 123.0  | 1.555        | 262.7          | 408.4         | R507          |

| DENSITY       |                        |  |
|---------------|------------------------|--|
| REFRIGERANT   | molecular weight       |  |
| Ammonia-R717  | 17.02-lighter than air |  |
| AIR-R729      | 28.96                  |  |
| R290-Propane  | 44.097                 |  |
| R410A         | 72.60                  |  |
| R404A         | 72.60                  |  |
| R-22          | 86.468                 |  |
| R134a         | 102.03                 |  |
| 1234yf/1234ze | 114.0                  |  |

From the above table one can see that Ammonia is the only refrigerant lighter than air, and all other refrigerants are heavier than air

#### AMMONIA IS LIGHTER THAN AIR & HAS LOWER DENSITY

All other refrigerants are heavier than air and have higher density If ammonia leaks- it rises in the air and disintegrated-other refrigerants settle in the machine room and displace oxygen.

If machine room is not ventilated there have been more accidents reported due to loss of oxygen leading to suffocation

People are unable to detect leakages of these refrigerants as they have no smell and leakage is suspected only when cooling effect is reduced or lost.

43

#### HEAT TRANSFER RATE AND CONDUTIVITY

The disadvantage of heavier refrigerants is the heat transfer rate is lower during evaporation and condensation partly as a result of a greater liquid film thickness due to lower evaporation or condensation enthalpy.

Further disadvantage, is the very low thermal conductivity of HCFC and HFC refrigerants in the liquid phase as compared with ammonia in the liquid phase.

45

Most of the thermal properties influencing heat transfer are favorable to ammonia compared to HCF 22 refrigerant. The heat transfer properties of R134a and R404A are very similar to R-22 Specific heat of liquid is nearly 4 times -4 to 1 Latent heat of vaporization is-6 to 1 Liquid thermal conductivity is -5.5 to 1 Viscosity is less-0.8 to1 Liquid density is less as mentioned earlier-0.5 to 1 All these properties help in improving heat transfer correlation between ammonia relative to HCFC 22 and other commonly used manmade refrigerants for condensing and evaporating heat transfer processes.

Leakage losses

- 1. The molecular weight of ammonia is 17.03, whereas HCFC 22 has 86.48, R134a is 102.03, R404A is 97.604 & R410A is 72.585.
- 2. This means if plant develops leak of equal size on both plants, loss of higher density refrigerants would be greater than ammonia.
- 3. Similarly, during purging the loss of refrigerant is less in ammonia plants compared to other refrigerants for the same reason.

44

| Heat transfer rates<br>or R134a      | of Ammonia compar<br>or R404A refrigeran | ed to R-22<br>t.     |
|--------------------------------------|------------------------------------------|----------------------|
|                                      | Ammonia                                  | R-22, R134a,         |
|                                      |                                          | R404A                |
| Condensation outside                 | 7500-11000                               | 1700-2800            |
| tubes (W/m <sup>2</sup> K)           |                                          |                      |
| Condensation inside tubes            | 4200-8500                                | 1400-2000            |
| (W/m <sup>2</sup> K)                 |                                          |                      |
| Boiling outside Tubes                | 2300-4500                                | 1400-2000            |
| (W/m <sup>2</sup> K)                 |                                          |                      |
| Boiling inside tubes                 | 3100-5000                                | 1500-2800            |
| (recirculation of liquid)            |                                          |                      |
| $(W/m^2K)$                           |                                          |                      |
| higher heat transfer coefficients fo | r Ammonia, helps in use of s             | maller evaporators & |
| condensers or retain same heat tra   | nsfer areas & operate at high            | her evaporating      |
| efficiency/C.O.P.                    | temperatures, thus improvin              | g the cycle          |



HCFC 22 & other HFC refrigerant liquids and commonly used lubricating oils are mutually soluble in varying degrees depending upon type of oil, operating temperature and pressure,

Ammonia & oil are virtually insoluble. Hence recovering oil from various parts of ammonia system is easier & requires different approach to oil management. Oil recovery problems are nonexistent with ammonia at partial loads unlike HCFC 22 systems.

Also piping design is simpler in ammonia since oil is immiscible and hence does not require double risers or complicated piping arrangement to ensure that oil is returning to the compressor by maintaining adequate velocities even at partial loads and ensuring no oil traps anywhere in piping design.

49

| Volum<br>co       | e and ma<br>ndensing | and -15     | rate for<br><sup>0</sup> C evap | 100kW ca<br>orating te | apacity<br>mperat       | at 40ºC<br>ure                      |
|-------------------|----------------------|-------------|---------------------------------|------------------------|-------------------------|-------------------------------------|
| Refrigerant       | Cap.kW               | Power<br>kW | С.О.Р.                          | Pressure<br>ratio      | Mass<br>flow-<br>kg/hr. | Volume flow-<br>m <sup>3</sup> /hr. |
| Ammonia R-<br>717 | 100                  | 26.686      | 3.75                            | 6.583                  | <u>340.704</u>          | 173.0421                            |
| R-22              | 100                  | 27.897      | 3.58                            | 6.5186                 | 2401.91                 | 186.4804                            |
| R134a             | 100                  | 28.583      | 3.50                            | 6.193                  | 2723.76                 | 326.6467                            |
| R404A             | 100                  | 33.418      | 2.99                            | 4.955                  | 3732.48                 | 204.5811                            |

Ammonia refrigerant's mass flow rate is 1/7 times that of HCFC 22, or 10.97 times less compared to R404A -only 1/7 liquid needs to be pumped if R22 is used or 10 times lower pump-power compared to R404A. Thus, mechanical pumping power will be much less in ammonia system.

51

| Refrigeration capcity for +40 <sup>0</sup> C condensing and + 5 <sup>0</sup> C |
|--------------------------------------------------------------------------------|
| evaporating Temperature say for 50mm pipe size-                                |
| Ref: ASHRAE 2014 Refrigeration volume                                          |

| 50mm         R22         106.4         150.5         707.5           R134a         70.10         106         546           R404A         96.18         137.33         758.2           R410A         160.19         229.98         1320.9 <u>R717-</u> <u>218.6</u> <u>374.7</u> <u>2840.5</u> | Line<br>size | Refrigerant             | Suction<br>line-kW | Discharge line -<br>kW | Liquid<br>line-kW |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|--------------------|------------------------|-------------------|
| R134a         70.10         106         546           R404A         96.18         137.33         758.2           R410A         160.19         229.98         1320.9 <u>R717-</u> 218.6         374.7         2840.5 <u>Ammonia</u> 240.5         2840.5         2840.5                        | 50mm         | R22                     | 106.4              | 150.5                  | 707.5             |
| R404A         96.18         137.33         758.2           R410A         160.19         229.98         1320.9 <u>R717-</u> 218.6         374.7         2840.5 <u>Ammonia</u> 210.9         200.9         200.9                                                                                |              | R134a                   | 70.10              | 106                    | 546               |
| R410A         160.19         229.98         1320.9           R717-<br>Ammonia         218.6         374.7         2840.5                                                                                                                                                                      |              | R404A                   | 96.18              | 137.33                 | 758.2             |
| <u>R717-</u> <u>218.6</u> <u>374.7</u> <u>2840.5</u>                                                                                                                                                                                                                                          |              | R410A                   | 160.19             | 229.98                 | 1320.9            |
|                                                                                                                                                                                                                                                                                               |              | <u>R717-</u><br>Ammonia | <u>218.6</u>       | 374.7                  | <u>2840.5</u>     |

| 1           | teat pump ap       | oplications –te<br>and higher he | o get highest h<br>eat recovery  | ot water                    |
|-------------|--------------------|----------------------------------|----------------------------------|-----------------------------|
| Refrigerant | Critical<br>Temp⁰C | Critical<br>pressure-<br>MPa     | Boiling<br>point- <sup>0</sup> C | Critica<br>Density<br>kg/m3 |
| R717-       | 132.25             | 11.333                           | -33.33                           | 225.0                       |
| R134a       | 100.06             | 4.0593                           | -26.07                           | 511.0                       |
| R22         | 96.15              | 4.99                             | -40.81                           | 523.8                       |
| R1234yf     | 94.7               | 3.3822                           | -29.49                           | 475.6                       |
| R32         | 78.11              | 5.782                            | -51.65                           | 424.0                       |
| R404A       | 72.05              | 3.729                            | -46.22                           | 486.5                       |
| R410A       | 71.36              | 4.903                            | -51.55                           | 459.5                       |
| R744        | 30.98              | 7.377                            | -                                | 467.6                       |

50

| Pipe Si<br>Cap    | ze Comparison-<br>acity -200kW, evap | ASHRAE –Refrige<br>oorating temperatu | eration 2014<br>are +5ºC |
|-------------------|--------------------------------------|---------------------------------------|--------------------------|
| Refrigerant       | Suction line –<br>mm OD              | Discharge Line-<br>mm OD              | Liquid line –<br>mm OD   |
| Ammonia –<br>R717 | <u>50</u>                            | <u>40</u>                             | <u>20</u>                |
| HCFC-22           | 80                                   | 65                                    | 32                       |
| HFC134a           | 80                                   | 80                                    | 40                       |
| R404A             | 80                                   | 65                                    | 40                       |
| R410A             | 65                                   | 50                                    | 32                       |
| PIPING,FITT       | INGS COST AND<br>OTHER R             | INSULATION COS<br>EFRGERANTS          | ST IS MORE FOR           |

52

## Tolerance to water contamination

- 1. Ammonia systems are more tolerant to water contamination than HCFC/HFC systems.
- 2. A little leak of moisture in the system which does not exceed concentration beyond 100 PPM stays in the solution & does not freeze out.
- 3. Hence modest contamination with water does not usually interfere with ammonia system operation.
- 4. It is suggested that a small amount of water added in the ammonia system will help to reduce the risk of stress corrosion cracking.

| Refrigerant  | Cost per Kg as on<br>08-04-2020 | Cost of oil per liter |
|--------------|---------------------------------|-----------------------|
| Ammonia-R717 | <u>Rs. 60</u>                   | <u>Rs.160</u>         |
| R134a        | Rs. 450                         | Rs.1350               |
| R404A        | Rs. 450                         | Rs. 1350              |
| R410A        | Rs. 450                         | Rs.1350               |

# AMMONIA CONVINCES WITH TOP ENERGY **EFFICIENCY**

- 1. Zero ODP
- 2. Near Zero GWP-Zero Atmospheric Life
- Best Thermodynamic Efficiency compared to any other Refrigerant
   Favourable TEWI balance with high COP
- 5. Low cost
- 6. Lubricating oil inexpensive
- 7. Equipment manufactured in India- Compressors, condensers,
- evaporators
- 8. Available in all parts of country
- 9. Refrigerant Manufactured in India
- 10. Lighter than Air -Escapes to atmosphere and does not accumulate in machine room
- 11.Leaks easily detectable
- 12. Does not mix with oil-can be drained easily

57

## LIMITATIONS & DRAWBACKS

- 1. Toxicity
- 2. Flammability
- 3. Material compatibility
- 4. High Discharge temperature
- 5. OIL Miscibility

#### AMMONIA SMELLS-EASY LEAK DETECTION

Ammonia has a pungent odor and even small leaks as low as 5 PPM are detectable by smell so that maintenance staff can correct them. Almost all human beings can detect levels up to 25 PPM easily The smell is in fact an advantage since the smallest leakages are discovered immediately and then corrected.

The odourless refrigerants like HCFC-22 or HFC-134a and others, even if they leak from the system in large quantity, it won't be noticed till cooling performance drops. In case of leaks, since HFC/HCFC refrigerants are heavier than air & due to their odourless character, they settle down in plant room & more accidents have been reported due to suffocation.

56



58

#### Flammability in Air @ 60°C & 101.3 kPa ASHRAE Standard Safety Group Higher Flammability A3 B3 LFL or ETFL60 $\leq 100 \text{ g/m}^3 \text{ OR HOC} \geq 19 \text{ MJ/kg}$ Lower Flammability A2 B2 LFL or ETFL60 > 100 g/m<sup>3</sup> & HOC < 19 MJ/kg Lower Flammability LFL or ETFL60 > 100 g/m<sup>3</sup> & HOC < 19 MJ/kg with a maximum burning velocity of $\leq$ 10 cm/s A2L B2L No flame Propagation A1 **B**1 Lower Toxicity Higher Toxicity Flammability in Air @ 60°C & 101.3 kPa OEL $OEL \ge 400PPM$ < 400 PPM LFL = Lower Flammability Limit ETFL60 = Elevated Temperature Flame Limit @ 60°C HOC = Heat Of Combustion, OEL-Occupational Exposure Limit

ASHRAE Standard 34.1-2013-Toxicity/Flammability





- 1. ammonia is extremely hard (only above  $650^{0}{\rm C})$  to ignite and breaks down above  $450^{0}{\rm C}.$  The leaks are detectable above 5PPM by most. It is therefore extremely rare to encounter such high temperatures in normal air conditioning and refrigeration applications.
- 2. There is no reason for any concern that exposure to ammonia is a fire hazard.
- 3. Flammable limit by volume in air at atmospheric pressure for ammonia is as high as 16% to 25% concentration.
- 4. It is significant to know that no ammonia refigeration systems require use of flamproof controls by any International standard

63





| HIGHER       | A3                  | B3            |
|--------------|---------------------|---------------|
| FLAMMABILITY | R-290 Propane       |               |
|              | R-600a-Isonutane    |               |
| LOWER        | A2                  | B2            |
| FLAMMABILITY | R152a               |               |
|              | A2L                 | B2L           |
|              | R-32                | R-717 Ammonia |
|              | R-1234yf            |               |
|              | R1234ze(E))         |               |
| NO FLAME     | A1                  | B1            |
| PROPOGATION  | R22, R134a, R410A,  | R123          |
|              | R404A, R407C, R744- |               |
|              | CO <sub>2</sub>     |               |

64

### **Toxicity classifications**

Class A signifies refrigerants where toxicity has not been identified at concentrations  $\geq$  400 ppm v based on TLV-TWA data or consistent indices

Class B signifies refrigerants for where there is evidence of toxicity at concentrations < 400 ppm, based on TLV-TWA data or other consistent indices

TLV-Thresh hold limit value TWA-Time weighted average

| Toxicity Levels of Ammonia refrigerant                                                                                                                                                     |                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| 5 PPM                                                                                                                                                                                      | Onwards Detectable                                         |  |
| 25 PPM                                                                                                                                                                                     | Detected by most – no health hazard exposure 10 – 15 years |  |
| 100 PPM                                                                                                                                                                                    | No dangerous effects, minor irritation.                    |  |
| 400 – 700<br>PPM                                                                                                                                                                           | Irritation Eyes, Nose, Mucous . Lead to dryness            |  |
| 1700 PPM                                                                                                                                                                                   | Cough, Cramp, Serious Irritation, Injuries                 |  |
| 2000 PPM                                                                                                                                                                                   | Can Lead to Death                                          |  |
| 7000 PPM                                                                                                                                                                                   | Lethal within few minutes                                  |  |
| Recommended maximum allowable concentration for Ammonia in air is 2mg / m <sup>3</sup> for 30 minutes, 1mg / m <sup>3</sup> for 24 hrs & 0.5 mg / m <sup>3</sup> for one yearPPMx0,7=mg/m3 |                                                            |  |















| Discharge Temperature with Operating<br>conditions of+40°C/-20°C |                                                               |                                                                |  |
|------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|--|
| Refrigerant                                                      | Cp/Cv at<br>boiling point<br>or at<br>Atmospheric<br>pressure | Approximate isentropic<br>Discharge Temperature <sup>0</sup> C |  |
| R22                                                              | 1.236                                                         | 75                                                             |  |
| R134a                                                            | 1.154                                                         | 55                                                             |  |
| R404A                                                            | 1.166                                                         | 58                                                             |  |
| R410A                                                            | 1.244                                                         | 70                                                             |  |
| R717<br>(Ammonia)                                                | 1.348                                                         | 145                                                            |  |

#### MATERIAL COMPATIBILITY

- 1. Ammonia is not compatible with copper and copper bearing alloys. It is fully compatible with iron, steel and aluminum and use of aluminum is on increase.
- 2. Since chlorofluorocarbons are compatible with all materials, any material can be chosen and thus provides greater flexibility.
- 3. Also Ammonia installtions use normally open drive motors since copper winding is not suitable for Ammonia

75

#### FIELDS OF APPLICATIONS FOR AMMONIA REFRIGERANT

- The maximum allowable discharge gas temperature is 130-140°C with use of mineral oils for compressor lubrication.
- Many compressor manufacturers recommend use of synthetic oil for Ammonia systems designed for low temperature applications. The synthetic oil can withstand much higher temperatures say 140 to 150°C
- 3. If the isentropic temperature is exceeding this limit it is always advisable to go for multi-staging.
- 4. As a thumb rule if allowable temperature difference between saturated discharge and saturated suction temperature is more than 50K for Ammonia and 70K for R22 & other refrigerants, it is advisable to go for twostaging for getting better performance.

74

#### OIL MISCIBILITY

 Ammonia and mineral oils are not miscible and oil travels with ammonia refrigerant and is thus present in all parts of the system. Oil therefore needs draining from various points-such as oil separator, Receiver, L.P. vessel, Oil pot, air coolers, flooded chiller etc.
 The problem can be substantially reduced if one uses efficient oil separators with demister s. s. pads , so that minimum oil goes into the system , and major portion can be drained automatically to compressor from oil separator.
 Miscible POE/PAG oils for DX systems are also now available
 Many engineers consider oil immiscibility as advantage since oil once drained from oil separator, the inner surfaces of heat exchangers

a remain clean and heat transfer improves compared to HFC/HCFC refrigerants. It is important to remember that oil is mainly required for compressor lubrication only and presence of oil elsewhere in the system is unwanted as oil does not give refrigeration or cooling effect.

76

- Cold Storages for Potatoes, fruits ,vegetables and other commodities like chillies,seed storages,grains,termeric,dry fruits etc.
- 2. Ice Plants-Conventional block ice, flake ice, tube ice plants, slurry ice, plate ice plant
- 3. Fish freezing plants –Spiral freezers, plate freezers, IQF, Blast & Trolley freezers
- 4. Slaughter Houses & Meat processing plants
- Dairies using ice bank systems, ice reserve units ,chilled water systems, cold rooms and other requirements
- 6. Icecream making Plants
- 7. Chocolate making plants
- Process refrigeration plants using chilled water or low temperature brine chilling systems for Chemical/Dyestuff Industries
   Air conditioning of processing halls for cold chain facilities
- Air conditioning of processing halls for cold chain facilities like grading, sorting, Ante room areas.
   Breweries



11.Bottling plants for Coca-Cola/Pepsi & other soft drink bottlers 12. Concrete cooling applications for river dams, airport runways

and concrete expressways 13. Fertilizer plants Maximum use is of ammonia is in agricultural industry as a fertilizer with 99.5% minimum content of ammonia of commercial grade.

14. Recently many Super markets are also using ammonia/carbon dioxide(R717/R744) or ammonia/secondary fluids like propylene glycol systems

15. Liquefaction of gases like Chlorine,carbon dioixide & other gases

16. Pharmaceutical plants for process cooling

17. Mettalergical industry, ammonia is used as a source of inert gas, or for nitriding of metal surfaces.

18. In environmental protection, ammonia plays an important role in removing nitrogen oxides and sulpher dioxide from the smoke emitted by power plants.

79

# Non-Azeotropic Liquid Gas Blends-Advantage

- 1. Ammonia with Propane(290)
- 2. Ammonia with Octafluoropropane(R218)
- 3. Ammonia with Octafluorocyclobutane(R318)
- Ammonia with isobutane(R600a)
   60% Ammonia and 40% dimethyl ether(R723)

Experiments have shown that compared to pure Ammonia, some blends tested have lower discharge temperatures, lower compression ratios,5-10% better refrigeration capacity and better oil solubility(PAG or PAO oils),and reduces toxicity

Ref: Monika Witt-Condenser magazine November 2008

81

19.Air conditioning of large complexes like Air ports, telegraph, and other commercial office premises – more details given subsequently, using chilled water systems.
20. Skating ice rings for amusement parks
21. Space shuttles
22. Heat Pumps. Industrial heat pumps
23. Marine Refrigeration
and many other not listed applications

80

# THANK YOU Questions?

Ramesh Paranjpey Fellow Life member ASHRAE <u>ramesh.paranjpey@gmail.com</u> Cell No. 9822398220 Web: http://Ramesh-paranjpey.com